
Introduction
This application note covers the implementation of a simple USB application using the interrupt transfer type. This 
includes support for device enumeration, control and interrupt transactions, and definitions of descriptor data. The 
purpose of this software is to give a simple working example of an interrupt transfer application; it does not include 
support for multiple configurations, or other transfer types.

Overview by File Name
The firmware includes three header files and four source files. USB_MAIN.h consists of program constants, 
definitions, and function prototypes. The firmware can run in either low or full-speed, depending on whether 
_USB_LOW_SPEED_ is defined in this header file. USB_DESCRIPTOR.h contains the various structures used for 
the different types of descriptors. USB_REGISTER.h contains addresses for the USB core registers, and register 
access macros used throughout the software.
USB_MAIN.c - This file contains the main routine and some initialization subroutines. The main routine calls all 
initialization routines, then starts an infinite loop of updating the OUT packet with information received from the 
host, and the IN packet with information from the development boards peripherals. This file contains two interrupt 
service routines (ISR). The first ISR is called when timer two overflows and checks to see if a switch has been 
pressed or released. The second ISR is called when the analog to digital converter (ADC) finishes a conversion. 
This ISR switches the ADC connection between the potentiometer wheel and the temperature sensor, allowing for 
each to updated on every second conversion.
USB_DESCRIPTOR.c - This file contains the definitions of the actual descriptors used by the application. This 
includes a single device descriptor, configuration descriptor and interface descriptor. Since this firmware uses 
different endpoints for input and output transactions, there are two endpoint descriptors defined, one for each 
direction. There are also three string descriptors defining the string language, manufacturer, and product type 
respectively.
USB_ISR.c - The top-level USB ISR is located here. This is called when any USB type event occurs, and calls the 
appropriate event handler between reset (USBReset), incoming setup packet (HandleSetup), incoming data packet 
(HandleIN1), and out packet sent (HandleOUT2). The last three routines are responsible for actually reading and 
writing from the different endpoints. The USB_State variable used in this file contains the current USB state of the 
device, and the EpStatus array contains the current state of the 3 endpoints used.
USB_STD_REQ.c - All USB device requests, as defined in chapter 9 of USB specification, are handled by routines 
in this file. All of these have been made as simple as possible, and return responses specifically for this software 
implementation and which uses only one interface and one configuration. These routines all begin by checking the 
setup packet and verifying the instruction matches exactly as specified by the USB specification, otherwise the 
software returns a stall packet to the host.

Relevant Devices
This application note applies to the following devices:
C8051F320, C8051F321. 
AN167
USB INTERRUPT EXAMPLE FIRMWARE- REFERENCE MANUAL
Rev. 0.2 1/04 Copyright © 2004 by Silicon Laboratories AN167



AN167
Making Modifications
Although this software has been provided strictly as an example of a USB type application, it can be used in to 
some extent in a variety of applications.
To use this software for a similar application using the interrupt transfer type, very few changes are necessary. The 
main routine in USB_MAIN.c will need to be updated according to the type of data being used. Also, the packet 
size definitions in USB_MAIN.h should be modified for your particular application, the sample application uses 64 
and 8 byte endpoint zero packet sizes in full and low speed, and 8 byte packets on endpoints one and two. The 
polling interval on the packets can be changed using the bInterval field in the endpoint descriptors in 
USB_DESCIPTOR.c.
Using this software for other transfer types requires two in addition to those described above. First, the endpoint 
descriptors in USB_DESCIPTOR.c will need to be updated to reflect the transfer type you choose. This will depend 
on the number and type of endpoints required. Also, you need to write IN and OUT routines specifically for your 
application. These will be similar to the routines given in USB_ISR.c. 
Multiple configurations and multiple interfaces can be added to this software by adding the necessary descriptors 
to USB_DESCRIPTOR.c and possibly USB_DESCRIPTOR.h. After adding the necessary descriptors, you should 
update the interface and configuration routines in USB_STD_REQ.c as they currently only support one 
configuration and interface. 
To reduce the current size of the application, there are a few areas that can be cut to easily reduce program size. 
First, the string descriptors for iManufacturer and iProduct can be removed in most cases. Also, the standard 
request routines currently check all fields of the setup packet for validity, while it is possible to check only some of 
these fields and still be considered compliant to the USB Specification. Most of these checks could be removed to 
reduce code size while still passing the current revision of the compliance software, however this is not guaranteed 
for future revisions.
2 Rev. 0.2



AN167
Notes:
Rev. 0.2 3



AN167
Contact Information
Silicon Laboratories Inc. 
4635 Boston Lane 
Austin, TX 78735 
Tel: 1+(512) 416-8500 
Fax: 1+(512) 416-9669 
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com 
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. 
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from 
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features 
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability 
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to 
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. 
4 Rev. 0.2


	Introduction
	Overview by File Name
	Making Modifications
	Notes:
	Contact Information

