MarsBoard RK3066 Pro 驱动移植手册

目录

特殊说明2		
1.	按键驱动移植	2
2.	SPI 驱动移植	2
3.	I2C 驱动移植	3
4.	UART 驱动移植	3
5.	USB CAMERA 驱动移植	4
6.	LED 驱动移植	4
7.	PWM 驱动移植	4
8.	DS18B20 的添加	5
9.	SPI CS 的添加	5
10.	RS485 片选的添加	6

特殊说明

命令前加"#"的表示 PC 机的 ubuntu 终端输入的,并且是 root 用户权限;命令前加 "\$"的表示开发板终端输入的。

1. 按键驱动移植

- **1.1** 在 Board-rk30-box-key.c (arch\arm\mach-rk30) 这个文件 static struct rk29_keys_button key_button[]这个结构体中,第19行添加如下代码:
 - {

```
.desc = "esc",
.code = KEY_BACK,
.adc_value = 334,
.gpio = INVALID_GPIO,
.active_low = PRESS_LEV_LOW,
```

```
},{
.d
```

```
.desc = "vol-",
.code = KEY_VOLUMEDOWN,
.adc_value = 135,
.gpio = INVALID_GPIO,
.active_low = PRESS_LEV_LOW,
```

},{

```
.desc = "vol+",
.code = KEY_VOLUMEUP,
.adc_value = 1,
.gpio = INVALID_GPIO,
.active_low = PRESS_LEV_LOW,
```

},

添加的按键对应开发板中 ESC, VOL-, VOL+

1.2 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生 marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

2. SPI 驱动移植

```
2.1 在 Board-rk30-box.c (arch\arm\mach-rk30),
static struct spi_board_info board_spi_devices[] ={}
结构体中添加如下代码(添加 SPI 设备资源):
{
```

.modalias = "spidev", .chip_select =0, .max_speed_hz = 66000000, .bus_num = 0, } 2.2 配置内核支持 SPI, #make menuconfig -> Device Drivers ---> -> [*] SPI support ---> <*> RK SPI master controller core support [*] RK SPI0 master controller 2.3 内核源码根目录下执行 #./build marsboard rk3066 mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

3. I2C 驱动移植

3.1 配置内核支持 I2C 通用驱动,

Device Drivers --->

{*} I2C support --->

<*> I2C device interface

- [*] Autoselect pertinent helper modules
- 3.2 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成 marsboard_rk3066_mtdboot.img,下载新内核到开发板中。 在开发板的/dev/目录下可以看到 i2c-0, i2c-1, i2c-2, i2c-3, i2c-4 五个设备文件。

4. UART 驱动移植

4.1 配置内核支持 UART

#. make menuconfig

Device Drivers --->

Character devices --->

Serial drivers --->

[*] RockChip RK29/RK30 serial port support

- [*] Serial port 0 support
- [*] Serial port 2 support
- [*] Serial port 3 support

4.2 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成 marsboard_rk3066_mtdboot.img,下载新内核到开发板中。 在开发板的/dev 目录下的 ttyS0,ttyS2,ttyS3 分别对应 UART0,UART 2,UART3。

5. USB CAMERA 驱动移植

```
5.1 添加驱动文件:
```

#make menuconfig Device Drivers --->

<*> Multimedia support --->

<*> Video For Linu

[*] Video capture adapters --->

```
[*] V4L USB devices --->
```

<*> USB Video Class (UVC)

[*] UVC input events device support

5.2 内核源码目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

6. LED 驱动移植

- 6.1 复制相关源码/ws_driver 整个文件夹到内核目录 drivers/char 下(ws_driver 目录下 包含可 led.c 的驱动文件),修改 driver/char 下 Kconfig 和 Makefile 将 ws_driver 文 件夹中的驱动文件添加到内核中。
- 6.2 在 Kconfig 中添加

#vim driver/char/Kconfig source "drivers/char/ws_driver/Kconfig" #vim driver/char/Makefile

添加

obj-y += ws_driver/

6.3 配置内核

#make menuconfig

```
Drivers --->
```

Character devices --->

ws_add_drivers --->

[*] LED support

6.4 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

7. PWM 驱动移植

- 7.1 在 6.1 节中复制的 ws_driver 文件夹中包含动源码 Pwm1。
- 7.2 配置内核

#make menuconfig
Device Drivers --->

Character devices ---> ws_add_drivers ---> [*] pwm11_test

7.3 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

8. DS18B20 的添加

- 8.1 在 6.1 节中复制的 ws_driver 文件夹中包含动源码 ds18b20.c
- 8.2 配置内核

#make menuconfig

Device Drivers --->

Character devices --->

ws_add_drivers --->

[*] DS18B20 suppor

8.3 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成 marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

9. SPI CS 的添加

```
9.1 修改 device.c
        vim marsboard-rk3066-linux-3.0.8+/arch/arm/mach-rk30/ devices.c
9.2 修改第729行为
        #define SPI_CHIPSELECT_NUM 1
9.3 注释第 769 到 774 行
    /*{
        .name = "spi0 cs0",
        .cs_gpio = RK30_PIN1_PA4,
        .cs iomux name = GPIO1A4 UART1SIN SPIOCSNO NAME,
        .cs_iomux_mode = GPIO1A_SPI0_CSN0,
    },
    */
9.4 注释第833到838
    /*{
        .name = "spi1 cs0",
        .cs gpio = RK30 PIN2 PC4,
        .cs_iomux_name = GPIO2C4_LCDC1DATA20_SPI1CSN0_HSADCDATA1_NAME,
        .cs iomux mode = GPIO2C SPI1 CSN0,
    },
    */
```

9.5 在 6.1 节中复制的 ws_driver 文件夹中包含动源码 at 45_cs.c

9.6 配置内核

#make menuconfig
Device Drivers --->
Character devices --->
ws_add_drivers --->

[*] spi_cs

9.7 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。

10.RS485 片选的添加

10.1 在 6.1 节中复制的 ws_driver 文件夹中包含动源码 RS485.c。 10.2 配置内核

#make menuconfig

Device Drivers --->

Character devices --->

ws_add_drivers --->

[*] RS485 support

10.3 内核源码根目录下执行

#./build_marsboard_rk3066_mtd

编译内核,生成marsboard_rk3066_mtdboot.img,下载新内核到开发板中。