
DRAFT

DR

T DR

DR

RAF

DR

FT D

DR

 DRA
AFT DRAF

AFT DRAFT DRAFT D

AFT DRAFT DRAFT DRAFT DRA

AFT DRAFT DRAFT DRAFT DRAFT DRAFT

R_<nnnnn>
LPC18xx/LPC43xx SPIFI software library
Rev. 0.01 — 27 April 2012 Report

Document information

Info Content

Keywords LPC18xx, LPC43xx

Abstract This document describes the SPI Flash Interface (SPIFI) software library

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

Revision history

Rev Date Description

0.1 <tbd> Preliminary version
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 2 of 13

Contact information
For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

1. Introduction

This document describes the support functions for the SPI Flash Interface (SPIFI)
provided for NXP microcontrollers that include SPIFI.

2. Supported devices

Serial flash devices with the following features are supported:

• Read JDEC ID

• Page programming

• at least one command with uniform erase size throughout the device

Table 1 shows a list of vendor QSPI devices which are verified to support the SPIFI API.
Other devices can be used and will run in basic single SPI mode at lower speed.

Remark: All QSPI devices have been tested at an operating voltage of 3.3 V.

[1] Level translation circuitry, which might affect performance, is required for these parts.

The following devices lack one or more of these features and are not supported:

Elite: F25L004, F25L008, F25L016.

Table 1. Supported QSPI devices

Manufacturer Device name

AMIC A25L512, A25L010, A25L020, A25L040, A25L080, A25L016, A25L032,

A25LQ032

Atmel AT25F512B, AT25DF021, AT25DF041A, AT25DF081A, AT25DF161,

AT25DQ161, AT25DF321A, AT25DF641

Chingis Pm25LD256, Pm25LD512, Pm25LD010, Pm25LD020, Pm25LD040,

Pm25LQ032

Elite (ESMT) F25L08P, F25L16P, F25L32P, F25L32Q

Eon EN25F10, EN25F20, EN25F40, EN25Q40, EN25F80, EN25Q80,
EN25QH16, EN25Q32, EN25Q64, EN25Q128

Gigadevice GD25Q512, GD25Q10, GD25Q20, GD25Q40, GD25Q80, GD25Q16,

GD25Q32, GD25Q64

Macronix MX25L8006, MX25L8035, MX25L8036, MX25U8035[1], MX25L1606,

MX25L1633, MX25L1635, MX25L1636, MX25U1635[1], MX25L3206,

MX25L3235, MX25L3236, MX25U3235[1], MX25L6436, MX25L6445,

MX25L6465, MX25L12836, MX25L12845, MX25L12865, MX25L25635,

MX25L25735

Numonyx M25P10, M25P20, M25P40, M25P80, M25PX80, M25P16, M25PX16,

M25P32, M25PX32, M25P64, M25PX64, N25Q032, N25Q064, N25Q128

Spansion S25FL004K, S25FL008K, S25FL016K, S25FL032K, S25FL032P,

S25FL064K, S25FL064P, S25FL129P

SST SST26VF016, SST26VF032, SST25VF064

Winbond W25Q40, W25Q80, W25Q16, W25Q32, W25Q64
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 3 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

Eon: 25B64.

SST: 25VF512, 25WF512, 25VF010, 25WF010, 25LF020, 25VF020, 25WF020, 25VF040,
25WF040, 25VF080, 25WF080, 25VF016, 25VF032.

3. SPIFI hardware

The LPC18xx/LPC43xx microcontrollers define a base address for the SPIFI registers and
a base address for the memory area in which the serial Flash connected to the SPIFI can
be read.

The first operation with the serial Flash is Read JEDEC ID, which is implemented by most
serial Flash devices. Depending on the device identity code returned by the serial Flash in
this operation, device-specific commands are used for further operation. Programming
and other operations on the serial Flash are performed by API calls as described in this
document.

4. SPIFI software library

4.1 SPIFI function allocation

Table 2 shows an overview of the SPIFI API calls. For details see Section 4.2.

Table 2. SPIFI function allocation

Function Description

spifi_init This call sends the standardized JEDEC ID command to the attached serial flash device. If
a serial flash responds with an ID known to the SPIFI API, it is set up for operation as
standard memory.

Parameter0 - Pointer to SPIFIobj

Parameter1 - (minimum clock cycles with CS pin HIGH) - 1

Parameter2 - SPIFI options

Parameter3 - Serial clock rate

Return - SPIFI error code

spifi_program This call programs length bytes in the serial flash. obj must point to the object returned by
the preceding spifi_init call.

Parameter0 - Pointer to the object returned by the preceding spifi_init call.

Parameter1 - Source address (in RAM or other memory) of the data to be programmed.

Parameter2 - Number of bytes to be programmed.

Return - SPIFI error code.

spifi_erase This command can be used to erase sections of the serial flash. It is not needed for
re-programing because spifi_program automatically erases as necessary. obj should point
to the object returned by the preceding spifi_init call.

Parameter0 - Pointer to the object returned by the preceding spifi_init call.

Parameter1 - SPIFI memory area to be erased.

Return - SPIFI error code
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 4 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

4.2 SPIFI function calls

4.2.1 Calling the SPIFI driver

Remark: Compile any module that calls the SPIFI API with the compiler set for ARM ABI
compatibility. This is the default in most compilers.

4.2.2 SPIFI initialization call spifi_init

The SPIFI initialization API call sends the standardized Read JEDEC ID command to the
attached serial flash device. If a serial flash responds, it is set up for reading in ARM
memory space.

int spifi_init (SPIFIobj *obj, unsigned csHigh, unsigned options, uclnsigned MHz)

After a spifi_init call that returns one of the unknown error codes (0x20009 to 0x20006,
see Table 4), the caller can read and check the SPIFI memory area but should not issue
any spifi_program or spifi_erase calls because not enough is known about the device to
accomplish these tasks.

spifi_init can be called repeatedly in order to change some of its operands. The
subsequent call need not use the same SPIFIobj, and need not use the same version of
the driver as the preceding call. The only case in which problems should arise with
reusing spifi_init is if the SPIFI and microcontroller hardware has been reset but the
serial flash hardware has not (since most serial flashes don't have a Reset pin).

Parameter0 obj

obj points to an area of memory large enough to receive the object created by spifi_init.
The space required for the SPIFI object is 192 bytes.

Parameter1 csHigh

csHigh is one less than the minimum number of clock cycles with the CS pin HIGH, that
the SPIFI should maintain between commands. Compute this parameter from the SPIFI
clock period and the minimum HIGH time of CS from the serial flash data sheet:

csHigh = ceiling(min CS HIGH / SPIFI_CLK) - 1

where ceiling means round up to the next higher integer if the argument isn't an integer.

Parameter2 options

options contains 10 bits controlling the binary choices shown in Table 3. options can be 0
or any AND or OR combination of the bits represented in Table 3. An optional use of
names for the enumeration of bit values is also shown.

Table 3. Bit values for spifi_init options parameter

Bit Value Description Name

0 SCL output mode

0 SCL is low when a frame/command is not in progress. S_MODE0

1 The SCL output is high when a frame/ command is not in progress.
Note that S_MODE3+ S_FULLCLK+S_RCVCLK is not allowed.
Use S_MODE0 or S_INTCLK.

S_MODE3
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 5 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

Parameter3 MHz

MHz is the serial clock rate divided by 1000000, rounded to an integer. It is used for devices
that allow a variable number of dummy bytes between the address and the read data in a
memory read command. This operand is only required for some Numonyx and Winbond
quad devices, but it is good practice to include it in all spifi_init calls.

Return

A return value of zero indicates success. Non-zero error codes are listed in Table 4

1 SPIFI read mode

0 The fastest read operation provided by the device will be used. S_MAXIMAL

1 SPI mode and the slowest, most basic/ compatible read operation
will be used.

S_MINIMAL

5:2 0 Reserved -

6 Sampling edge -

0 Data from the serial flash is sampled on rising edges of the SCL
output, as in classic SPI applications. Suitable for slower clock
rates.

S_HALFCLK

1 Data from the serial flash is sampled on falling edges on the SCL
output, allowing a full clock period for the serial flash to present
each bit or group of bits.

S_FULLCLK

7 Sampling clock

0 Data is sampled using the internal clock from which the SCL pin is
driven.

S_INTCLK

1 Data is sampled using the SCL clock fed back from the pin. This
allows more time for the serial flash to present each bit or group of
bits, but when used with S_FULLCLK can endanger hold time for
data from the flash.

S_RCVCLK

8 SPIFI mode

0 If the device can operate in quad mode, quad mode will be used,
else SPI mode.

-

1 If the connected device can operate in dual mode (2 bits per clock),
dual mode will be used, else SPI mode.

S_DUAL

9 0 Reserved -

Table 4. Error codes for spifi_init

Error code Description

0x2000A No operative serial flash (JEDEC ID all zeroes or all ones)

0x20009 Unknown manufacturer code

0x20008 Unknown device type code

0x20007 Unknown device ID code

0x20006 Unknown extended device ID value

0x20005 Device status error

0x20004 Operand error: S_MODE3 + S_FULLCLK + S_RCVCLK selected in options

Table 3. Bit values for spifi_init options parameter

Bit Value Description Name
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 6 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

4.2.3 SPIFI program call spifi_program

The SPIFI program API call programs opers.length bytes in the serial flash.

int spifi_program (SPIFIobj *obj, char *source, SPIFIopers *opers)

A spifi_program call with source equal to opers.dest and opers.options not including
S_FORCE_ERASE will not do any erasing nor programming, since the data at opers.dest
is equal to the data at source. Such a call can be used to protect or unprotect sector(s)
depending on the value of opers.protect.

Parameter0 obj

obj points to the object returned by the preceding spifi_init call.

Parameter1 source

source is the address in RAM or other memory of the data to be programmed.

Parameter2 opers

Parameter2 is defined through the SPIFIopers C struct (see Section 4.2.5). opers.length is
the length of bytes to be programmed in the serial flash. opers.dest is the destination
address of the data in the SPIFI memory, and opers.options defines the options for
programming the SIFI.

Return

spifi_program does not return until programming and erasure have been completed or an
error is encountered. A return value of zero indicates success. Non-zero error codes are
listed in Table 5.

4.2.4 SPIFI erase call spifi_erase

The spifi_erase call can be used instead of the spifi_program call to speed up erasing
large memory areas. Since erasing is also done by spifi_program, the spifi_erase call is
not strictly necessary.

int spifi_erase (SPIFIobj *obj, SPIFIopers *opers)

Parameter0 obj

obj points to the object returned by the preceding spifi_init call.

Table 5. Error codes for spifi_program and spifi_erase

Error code Description

0x20007 Programming and erasure cannot be done because the serial flash was not
identified in the spifi_init operation.

0x20005 Device status error

0x20004 Operand error: the dest and/or length operands were out of range. See
<tbd>Address operands and checking below.

0x20003 Time-out waiting for program or erase to begin: protection could not be
removed.

0x20002 Internal error in API code.

0x2000B S_CALLER_ERASE is included in options, and erasure is required.

other Other non-zero values can occur if options selects verification. They will be the
address in the SPIFI memory area at which the first discrepancy was found.
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 7 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

Parameter1 opers

Parameter1 is defined through the SPIFIopers C struct (see Section 4.2.5).

The code will use the largest unit(s) of erasure it can to accomplish the indicated
operation and will use the opers.scratch area only when required by a starting or ending
address that is not a multiple of the smallest available erase size. The driver will attempt to
remove any protection on the sector(s) indicated by opers.dest and opers.length. If this
removal succeeds, the opers.protect value determines the protection of the sector(s) on
return, as described in Section 4.2.7.
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 8 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

Return

Return values are the same as for spifi_program. A return value of zero indicates success.
Non-zero error codes are listed in Table 5

4.2.5 SPIFI operands for program and erase

SPIFIopers is a C struct that contains operands for the spifi_program and spifi_erase calls.

typedef struct {
 char *dest; /* starting address for programming or erasing */
 unsigned length;/* number of bytes to be programmed or erased */
 char *scratch;/* address of work area or NULL */
 int protect; /* protection to apply after programming/erasing is done */
 unsigned options;/* see the table below */
} SPIFIopers;

dest specifies the first address to be programmed or erased, either in the SPIFI memory
area or as a zero-based device address. If dest is not a multiple of the smallest sector size
that's uniformly available throughout the serial flash, the first part of the first sector is one
of the following:

• Preserved if a scratch address is provided and/or an erase isn't needed for the first
sector.

• Erased to all ones if scratch is NULL and an erase is needed for the first sector.

Similarly, if dest plus length is not a multiple of the sector size, the last part of the last
sector is one of the following:

• Preserved if scratch is non-zero and/or an erase isn't needed for the last sector.

• Erased to all ones if scratch is zero and an erase is needed for the last sector.

For either spifi_program or spifi_erase, scratch should be NULL or the address of an area
of RAM that the SPIFI driver can use to save data during erase operations. If provided, the
scratch area should be as large as the smallest erase size that is available throughout the
serial flash device. If scratch is NULL (zero) and an erase is necessary, any bytes in the
first erase block before dest are left in erased state (all ones), as are any bytes in the last
erase block after dest + length.

The driver uses the least number of bytes possible in the scratch area. If dest and
dest + length - 1 are in separate erase blocks, the driver will use the larger of (the
number of bytes before dest in the first erase block) and (the number of bytes after
(dest + length) in the last erase block). If only one erase block is involved, the driver will
use the sum of these two numbers.

options contains 10 bits controlling the binary choices shown in Table 6. options can be 0
or any AND or OR combination of the bits represented in Table 6. An optional use of
names for the enumeration of bit values is also shown.

Unless options includes S_CALLER_PROT, the driver attempts to remove
write-protection on the sector(s) implied by dest and length.

The protect operand indicates whether the driver should protect the sector(s) after
programming is completed. See Section 4.2.7 for details of the protect value.
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 9 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

4.2.6 Address operands and checking

For both spifi_program and spifi_erase, the opers.dest value can be either the
(zero-based) address within the serial flash or an address in the SPIFI memory area.
opers.dest and opers.length operands are always checked against the device size; when
verification is requested, they are also checked against the allocated size of the SPIFI
memory area.

4.2.7 Protection

Serial flash devices provide write-protection in several ways. Most devices simply have 2
to 5 bits in their status registers that specify what fraction of the device is write protected,
possibly in conjunction with a bit that specifies whether the fraction is at top or bottom
and/or a bit that specifies whether the fraction is protected or unprotected. For such
devices, at the start of spifi_program or spifi_erase the driver simply saves the status
byte, then clears all of the 2 to 5 bits, so that the whole device is write-enabled.

The opers.protect value of a spifi_program or spifi_erase on such a device can be 0 to
leave the device fully write-enabled, -1 to restore the protection status saved at the start of
the call, or any other non-zero value to set the protection status to that value. (Consult the
device data sheet for the content of the latter value.)

Some serial flash devices use individual protection bits for each sector. These include
SST quad devices, Atmel devices, and Macronix devices that provide a WPSEL
command and on which such a command has been executed (Setting WPSEL is an
irrevocable operation). Similarly to devices which include status register protection, -1 in
the opers.protect value makes the driver restore protection to the state in effect before the

Table 6. Bit values for SPIFIopers options parameter

Bit Value Description Name

1:0 0 Reserved -

2 Erase mode -

0 Erasing is done when necessary. S_ERASE_AS_REQD

1 All sectors in dest to dest + length will be erased. S_FORCE_ERASE

3 Erase mode

0 Erasing is done when necessary. S_ERASE_AS_REQD

1 Erasing is handled by the caller not by the driver. S_CALLER_ERASE

4 Verify program -

0 No reading or checking will be done. S_NO_VERIFY

1 Data will be read back and checked after programming. S_VERIFY_PROG

5 Verify erase -

0 No reading or checking will be done. S_NO_VERIFY

1 Sectors will be read back and checked for 0xFF after
erasing

S_VERIFY_ERASE

8:6 0 Reserved -

9 Write protection -

0 The driver removes protection before the operation and
sets it as specified thereafter.

S_DRIVER_PROT

1 Write protection is handled by the caller not by the
driver.

S_CALLER_PROT
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 10 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

call. 0 leaves the programmed/erased sector(s) write-enabled, and 1 write-protects them.
For small (high and low) sectors on SST quad devices only, opers.protect can be 3 to
read- and write-protect the sectors, or 2 to read-protect but write-enable them (Write Only
Memory!). 2 and 3 work like 0 and 1 respectively for other sectors and other devices.
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 11 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

5. Legal information

5.1 Definitions

Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.

5.2 Disclaimers

Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.
<Document ID> All information provided in this document is subject to legal disclaimers. © NXP B.V. 2012. All rights reserved.

Report Rev. 0.01 — 27 April 2012 12 of 13

DRAFT

DRAFT DRAFT DR

DRAFT DRAFT DRAF

RAF

DRAFT DRAFT DRAF

FT D

DRAFT DRAFT DRAF

 DRA

NXP Semiconductors R_<nnnnn>
SPIFI software library
T D
T DRAFT DRA

T DRAFT DRAFT DRAFT

6. Contents

1 Introduction . 3

2 Supported devices. 3

3 SPIFI hardware. 4

4 SPIFI software library . 4
4.1 SPIFI function allocation. 4
4.2 SPIFI function calls . 5
4.2.1 Calling the SPIFI driver. 5
4.2.2 SPIFI initialization call spifi_init. 5

Parameter0 obj .5
Parameter1 csHigh. .5
Parameter2 options .6
Parameter3 MHz .6
Return. .7

4.2.3 SPIFI program call spifi_program 7
Parameter0 obj .7
Parameter1 source .7
Parameter2 opers. .7
Return. .7

4.2.4 SPIFI erase call spifi_erase 8
Parameter0 obj .8
Parameter1 opers. .8
Return. .9

4.2.5 SPIFI operands for program and erase 9
4.2.6 Address operands and checking 10
4.2.7 Protection . 10

5 Legal information. 12
5.1 Definitions. 12
5.2 Disclaimers . 12

6 Contents 13
© NXP B.V. 2012. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 27 April 2012

Document identifier: <Document ID>

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.

	1. Introduction
	2. Supported devices
	3. SPIFI hardware
	4. SPIFI software library
	4.1 SPIFI function allocation
	4.2 SPIFI function calls
	4.2.1 Calling the SPIFI driver
	4.2.2 SPIFI initialization call spifi_init

	Parameter0 obj
	Parameter1 csHigh
	Parameter2 options
	Parameter3 MHz
	Return
	4.2.3 SPIFI program call spifi_program

	Parameter0 obj
	Parameter1 source
	Parameter2 opers
	Return
	4.2.4 SPIFI erase call spifi_erase

	Parameter0 obj
	Parameter1 opers
	Return
	4.2.5 SPIFI operands for program and erase
	4.2.6 Address operands and checking
	4.2.7 Protection

	5. Legal information
	5.1 Definitions
	5.2 Disclaimers

	6. Contents

